تاریخچه ی ریاضیات

نیل هنریک آبل متولد اوت 1802 در سال 1824 ثابت نمود که صرفنظر از معادلات درجه اول تا درجه چهارم، هیچ دستور جبری که بتواند معادله درجه پنجم را به نتیجه برساند وجود ندارد و برای اینکه کارهای خود را به دیگران بشناساند در سال 1825 به آلمان سفر کرد و چون در آنجا نشانی از زندگی بدست نیاورد به پاریس روی نهاد. آبل در این شهر در شاهکار بزرگ خود دست دیگری برد و مقاله‌ای «درباره خاصیت عمومی طبقه بسیار وسیعی از توابع غیر جبری» انتشار داد. وی در نتیجه مکاشفه‌ای که تنها حاصل نبوغش بود توانست راه خود را کج کند و انتگرالهای بیضوی لژاندر را مورد مطالعه قرار دهد و کشف او آنقدر استادانه بود که با نهایت سادگی کاری را که استاد بزرگ مزبور در مدت چهار سال انجام داد تبدیل به هیچ کرد.

آبل این کشف ذیقیمت خود را به کوشی سپرد. اما افسوس! کوشی آنرا گم کرد و نروژی بیچاره در حالی که آخرین شاهی خود را مصرف کرده بود و آخرین امید خود را از دست داده بود ناچار شد به وطنش مراجعت کند، و هم در آنجا بود که آبل در نتیجه محرومیتها و گرفتاریهای فراوان به مرض سل مبتلا گشت و در ششم آوریل 1829م جان سپرد.

دو روز پس از آن تاریخ کوشی نسخه خطی او را پیدا کرد و آکادمی علوم از ارزش آن آگاه شد و جایزه بزرگ خود را به آپل و ژاکوپی آلمانی تخصیص داد. ولی آبل آنچنان فراموش شده بود که نامی از او در میان نبود و کسی نمی‌دانست که دو سال پیش مرده است.
گالوا که زندگیش در تاریخ علم صفحه‌ای اندوهبار گشوده است در 26 اکتبر 1811م در پاریس متولد شد. در 14 یا 15 سالگی بجای انجام تکالیف عادی دبیرستان اوقات خود را صرف مطالعه در هندسه لژاندر و آثار بزرگ لاگرانژ و اکتشافات آبل می‌نمود. وی پس از عدم موفقیت در امتحان ورودی مدرسه پلی تکتنیک و نیز رانده شدن از دانشسرای عالی و مخصوصاً به سبب آشنا نبودن با دانشمندان مشهور وارد مبارزات سیاسی شد،‌ او عقیده داشت:
«من برای دانشمند شدن چیزی کم دارم و بنابراین قلب من آرزوئی دارد که مغز من قادر به انجام آن نیست.»
گالوا پس از چند ماه زندانی شدن آزاد شد. ولی درحالی که فقط چند روز بیش از بیست سال و هفت ماه داشت در یک دوئل بخاطر زنی هرجائی مجروح گردید. شاید در تمام تاریخ علم فصلی حزن انگیز‌تر از شب 29ماه مه 1832وجود نداشته باشد.
گالوا «تئوری گروه ها» را که قبلاً بوسیله کوشی و لاگرانژ مطالعه شده بود در معادلات جبری به کار برد و گروه جانشینی هر معادله را مشخص کرد. این تئوری که امروزه تعمیم یافته و در عین حال ساده‌تر شده است برای حل مسائل گوناگون بکار می‌رود و وسیله جستجوی بدست فیزیکدانان زمان ما داده است.
دیگر از دانشمندان بزرگ این قرن ژنرال پونسله فرانسوی می‌باشد که دارای آثاری همچون «موارد استعمال آنالیز در ریاضی» و«خواص تصویری اشکال» می‌باشد. اکتشافات پونسله باعث ترقی عظیمی در هندسه جدید گردید. وی برای اولین بار عوامل موهومی را در هندسه دخالت داد و تعبیر کرد و گذشته از آن پونسله «اصل ثنویت» و طریقه تعاکس را فراهم آورد و طریقه اخیر خود به خود هرگونه اکتشاف جدید را مضاعف می‌نماید: در حیقیقت به موجب این اصل تمام احکام هندسه تصویری دو بدو وابسته به یکدیگرند و برای رجوع از یکی به دیگری کافیست که در احکام قضایا عمل نقطه و خط را با یکدیگر عوض نمائیم. همچنین لازارکانو فرانسوی را باید نام ببریم که اکتشافات هندسی او دارای اهمیت اساسی می‌باشد.
لازار که تمام کوشش خود را برای آزاد کردن هندسه از قید آنالیز بکار می‌برد دارای آثاری نظیر «هندسه وضعی» و «مطالعات درباره نظریه موربات» می‌باشد که در پیشرفت هندسه ترکیبی که همان باقیمانده هندسه قدما می‌باشد مؤثر واقع شد. این هندسه که از زمان دکارت به بعد مورد توجه واقع نشده بود در نتیجه اکتشافات او و نیز کشفیات پونسله و شال فرانسوی آبروی جدیدی یافت و ترقیات شگرفی نمود.
میشل شال هندسه مطلق را با اعلی‌ترین درجه هنر و استادی و با منتهای ظرافت و زیبائی به بالاترین حد ممکن ترقی داد. هدف اصلی او این بود که مسائل هندسه را بدون کمک محاسبه مطالعه نماید.
شال در سال 1834 افکار خود را در کتابی به نام «چشم انداز تاریخی» منتشر کرد که به دریافت جایزه‌ای از آکادمی بلژیک موفق شد و شهرتی فراوان کسب کرد و در اواخر عمر تئوری «مشخصات» را اختراع کرد که از طرف جامعه سلطنتی انگلستان به اخذ جایز نایل گردید.
در نیمه اول قرن نوزدهم ریاضیدان نابغه روس نیکلای ایوانویچ لوباچفسکی استاد دانشگاه قازان با شجاعت تمام مطرح نمود که: اصل اقلیدس نتیجه منطقی سایر اصول هندسه نیست و بنابراین خود را درباره «هندسه غیر اقلیدسی» به جامعه ریاضیات و فیزیک قازان تقدیم کرد. در این هندسه قبول شده است که از هر نقطه واقع در خارج یک خط بی‌نهایت خط عبور می‌کند که آن را قطع نخواهد کرد. به این ترتیب لوباچفسکی این فکر را که هندسه اقلیدسی همچون آیات آسمانی حقیقت مطلق است از میان برد و این کار قدرت فکری بی‌مانند و جرأت علمی حیرت آوری لازم داشت که نتایج آن تا ایام ما نیز روز به روز ظاهر می‌شود.
بدون شک، تردید لوباچقسکی درباره حقیقتی که بیست و یک قرن تمام مورد تصدیق همه جهانیان بود یکی از نتایج انقلابات سیاسی و اجتماعی است که در آنوقت تمام اروپا را تحت تأثیر قرار داده بود. تقریباً در همان زمان ریاضیدان بزرگی درکشور مجارستان که تا آن موقع خارج از جریان ترقیات علمی بسر می‌برد پیدا شد که همان نتایج ریاضیدان بزرگ روسی را بدست آورد. این شخص ژان بولیه بود که اثر خود را تحت عنوان «مطالعات مقدماتی در اصول ریاضیات مطلق» درباره هندسه غیر اقلیدسی در سال 1832 انتشار داد.
وی نیز همچون لوباچفسکی ایمان و اعتقاد قطعی به هندسه اقلیدسی را باطل دانست و راه را برای ریمان آلمانی باز کرد که بیست و دو سال بعد از این تاریخ با قدرت بی‌مانندی فتوحات دو دانشمند متقدم خود را توسعه داد.
آن هندسه غیراقلیدسی که ریمان عرضه داشت دارای مفهومی به مراتب وسیعتر از آنچه که بولیه و لوباچفسکی در نظر داشتند می‌باشد.
بعد از او نوبت به ریاضیدان روسی پانتونی چبیچف استاد دانشگاه سن‌پطرزبورگ رسید و از آن پس کرونکر پر وسی وارد این صحنه گردید. وی با توسعه قلمرو قدیمی اعداد جبری – اعدادی که می‌توانند ریشه یک معادله جبری با ضرایب صحیح یا کسری باشند – طرح انقلابی را ریخت که مشابه با انقلاب غیر اقلیدسی‌ها درباره علم هندسه بود.
چندی بعد ادوارد کومر آلمانی در نتیجه اختراع نوعی از اعداد که به اعداد «ایده‌آل» موسومند جایزه ریاضیات آکادمی علوم پاریس را بدست آورد. این اکتشافات او بعدها بوسیله آلمانی دیگر به نام دده کیند که آخرین شاگرد گائوس بود اصلاح شد. دده کیند توانست مسأله‌ای را که از زمان ادوکس تا آن موقع متوقف مانده بود‌، یعنی تعریف دقیق اعداد اندازه نگرفتنی را با نهایت کفایت مورد مطالعه قرار دهد.
در اینجا ذکر نام دانشمندانی نظیر شارل وایراشتراس و شارل هرمیت که در مورد توابع بیضوی کشفیات ارزشمندی نمودند ضروری می‌باشد.
وایراشتراس آلمانی در توابع آبل که تعمیم توابع بیضوی می‌باشد مطالعات فراوان کرد و تئوری توابع نامتغیر مختلط را که به وسیله کوشی و گائوس مطالعه شده بود به باد انتقاد گرفت و موضوع را از نظر دیگری _ به وسیله بسط توابع تحلیلی به سری‌های کامل _ مورد مطالعه قرار داد و این تئوری را بر مبانی جدیدی متکی ساخت.
هرمیت فرانسوی نخستین کسی است که توابع بیضوی را برای حل معادلات درجه پنجم به کار برد و مطالعات بسیار مشکلی درباره حساب عالی نمود. همچنین هرمیت اصم بودن عدد پی را که در ریاضیات اهمیت بسیار دارد ثابت کرد.
از سال 1870 محصول و نتیجه ریاضیات با عده پژوهندگان و مکتشفین در هر کشور اروپائی رو به فزونی نهاد و اتازونی که در آغاز قرن نسبت به مطالعات تکنیکی گوشه‌گیر بود به نوبه خود وارد در راه جستجو‌های تئوریکی شد. دو دانشمند نابغه یکی جورج کانتور و دیگری هانری پوانکاره تحولات این دوره را هدایت و راهنمایی می‌نمودند.
جورج کانتور ریاضیدان آلمانی که در روسیه تولد یافته بود با نبوغ توأم با جسارت خود در ربع آخر قرن نوزدهم و در فاصله سالهای 1882 تا 1897 با وضع «فرضیه مجموعه‌ها» اساس هندسه اقلیدسی را که اصول موضوعه آن قریب دو هزار سال علم ریاضی را مهار کرده بود و ریاضیدانان برجسته‌ای نظیر لوباچفسکی، بولیه و ریمان در آن خللهائی پدید آورده بودند چنان در هم کوفت که در حال حاضر رویش اقلیدسی جای خود را به روشی جدید بر اساس فرضیه مذکور داده است و گمان می‌رود که درک مفاهیم ریاضی با اعمال این روش سهلتر و قطعی‌تر از آن است که اقلیدس تصور می‌کرد.
جورج کانتور مجموعه را به دو صورت زیر تعریف کرد:
1. مجموعه عبارت است از اجتماع اشیائی که دارای صفت ممیزه مشترک باشند. هر یک از آن اشیاء را «عنصر» مجموعه می‌گویند.
2. مجموعه عبارت است از اجتماع اشیائی مشخص و متمایز ولی ابتکاری و تصوری.
از نقطه نظر تشکیل مجموعه‌ها تعاریف مذکور را می‌توان در یک «اصل کلی» خلاصه کرد و آن تشکیل مجموعه‌ای است که اشیاء و عناصر آن دارای خاصیت مفروضی باشند.
هانری پوانکاره یا «غول فکر ریاضی» آخرین دانشمند جهانی است که به همه علوم واقف بود و در واقع عبارت از ماحصل تمام کوششهائی بود که در قرن نوزدهم درباره ریاضیات بعمل آمد. وی در تمام رشته‌های ریاضی نظری و عملی نبوغ خود را ظاهر ساخت و به حل بسیاری از مسائل پیچیده و مشکل موفق گردید. پوانکاره صاحب سی جلد کتاب و پانصد مقاله است که مربوط به مسائل کلاً مختلف می‌باشد. وی در بیست و هفت سالگی بزرگترین اکتشاف خود یعنی «توابع فوشین» را به دنیای دانش تقدیم نمود و برای حل معادلات دیفرانسیل که قبلاً ریاضی‌دان آلمان لازارفوکس کشفیات زیبائی در مورد آنها کرده بود کلید جدیدی بکار برد و به کمک آن نه تنها مشکل معادلات دیفرانسیل را حل کرد بلکه معماری توابع بیضوی را نیز روشن ساخت. اکتشافات وی در مبحثی از ریاضی که سابقاً‌ آنرا «تحلیل تواضع» می‌نامیدند و امروزه موسوم به «توپولوژی جبری» و از بزرگترین و مشکلترین مباحث ریاضی جدید است ارزش قاطع دارد. همچنین پوانکاره آنالیز را در مبحث نور و الکتریسته بکار برد و راه حل بسیاری از مسائل جبری را بدست داد.
بعد از پوانکاره ریاضیدان سوئدی میتاگ لفلر کارهای او ادامه داد و سپس ریاضیدان نامی فرانسوی امیل پیکارد در این راه قدم نهاد.
پیکارد هنوز بیش از بیست و چهار سال نداشت که با انتشار اثر خود درباره «توابع درست» در بین ریاضیدانان اروپا شهرت بسیار کسب کرد. در این اثر دو قضیه جدید درباره توابع متغیر موهومی ذکر کرده و نظر بدیعی اختیار نموده بود، که نهضت جدیدی در ریاضیات ایجاد می‌کرد. وی در آنالیز روشی ابداع کرد که بوسیله آن ممکن است بتدریج به جواب قطعی یک مسأله نزدیکتر گردید.
در اواخر قرن نوزدهم علم فیزیک ریاضی به منتها درجه تکامل خود رسید و دانش نجوم مکانیک آسمانی تکمیل گردید.
اکنون ریاضیدانان فرانسوی تنها به پرورش سنن کوشی واپرواشتراس اکتفا نمی‌کردند بلکه اکتشافات مهم گائوس درباره مورد استعمال آنالیز در هندسه یعنی هندسه عناصر بی‌نهایت کوچک را نیز اصلاح می‌کردند. برجسته‌ترین ریاضیدانی که در این راه کوشش بسیار کرد ژوزف برتران است که دوره عظیم «حساب دیفرانسیل» را تألیف کرد و ضمن آن روش جدیدی برای مطالعه منحنیات و سطوح بدست داد.
پس از او گاستون داربو کارهای بزرگ او را ادامه داد. وی در صدد برآمد دو رشته مخالف یعنی هندسه و آنالیز ریاضی را با یکدیگر آشتی دهد. و موفق شد که نه تنها قسمت‌های مقدماتی آنالیز بلکه معادلات با مشتقات جزئی را نیز در هندسه وارد سازد. داربو نتایج حاصل را در کتاب بزرگی به نام «دروسی درباره تئوری عمومی سطوح» که کلاسیک شده است انتشار داد.
چندی بعد ریاضیدان فرانسوی کامیل ژوردان به پیروی از کارهای کروتکر درباره تئوری گروههای گالوا کتابی در این باره انتشار داد که از لحاظ انتشار موضوع دارای اهمیت فوق‌العاده می‌باشد بطوری که تئوری گروهها همچون کلید سحرآمیزی به نظر می‌رسید که با نهایت استادی دستگاه دقیق و ظریف معادلات جبری را می‌گشود و در ساختمان آن آنقدر هنر به کار رفته بود که در عین حال در مسائل هندسی نیز مورد استفاده قرار می‌گرفت، و این کار در سال 1871 به کوشش ریاضیدان آلمانی فلیکس کلاین صورت گرفت.

تاریخ ریاضیات

پل پنلوه یکی دیگر از ریاضیدانان فرانسوی مسائل زیادی راجع به معادلات دیفرانسیل حل کرد و موارد استعمالی که بعدها در مکانیک برای آن یافت کاملاً جنبه کلاسیک پیدا کرد، و در همه جا تدریس می‌شود.
همچنین در نتیجه مساعی پنلوره و پیشقدمان او بود که مکانیک بصورت علمی کامل و جامع درآمد.
ویتوولترا ریاضیدان برجسته ایتالیائی درسال 1896 معادلات انتگرال را کشف کرد و وسیله پژوهش جدیدی بدست صنعتگران فیزیک ریاضی داد و سپس درصدد برآمد موضوع را تعمیم دهد و آنالیز جدیدی اختراع کند که دیگر از مقادیر Y و X و غیره بحث ننماید، بلکه بطور کلی توابع را در روابط وارد سازد. این اختراع جدید که «حساب توابع» نام داشت تاج سر علوم ریاضی از عهد عتیق تا زمان حال بود و در حقیقت نقطه انتهائی این تکامل محسوب می‌شد.
در اوایل قرن بیستم ماکس پلانک آلمانی و نیلز بور دانمارکی کوانتا را در اتم بکار بردند و طولی نکشید که نخستین فتح این تئوری ظهور کرد و آن تئوری مشهور آلبرت اینشتین آلمانی بود که معمولاً تئوری نسبیت خوانده می‌شود.
دیوید هیلبرت آلمانی که از بزرگترین ریاضیدانان نیمه اول قرن بیستم و در عداد بزرگترین ریاضیدانان تمام تاریخ بشر محسوب می‌شود در سال 1899م کتابی به نام «اصول اساسی هندسی» انتشار داد که هدف آن مربوط کردن اصول موضوعه هندسه به اصول حساب برای جلوگیری از تناقضات بود.
ابداعات این مرد بزرگ در تمام شعب ریاضی اعم از جبر و هندسه و آنالیز و توپولوژی و حساب و غیره آنقدر اساسی و مهم است که شاید تا صدها سال دیگر نیز ریاضیدانان از گنجینه‌های آن بهره‌برداری کنند.
متأسفانه این دانشمند نامی که یهودی هم نبود در 81 سالگی بواسطه زجر و شکنجه عمال هیتلر در یکی از اردوگاههای اسیران جنگی درگذشت.
هنری لوبگ فرانسوی نیز یکی دیگر از ریاضیدانان بزرگ نمیه اول قرن بیستم است. وی درباره انتگرال مفهوم جدیدی بدست داد که از نظر عادی آنالیز را بکلی تغییر می‌داد. مسأله اندازه‌گیری «آنسامبل»‌ها و تئوری انتگرال لوبگ از اساسی‌ترین ترقیات دانش در نیمه اول قرن بیستم می‌باشد.
بطوری که می‌توان گفت بسیاری از ترقیات مهم آنالیز ریاضی و تئوری توابع و حساب احتمالات و آمار ریاضی و حتی دانش فیزیک مرهون این ابداع مهم می‌باشد.
موریس دوکانی ریاضیدان دیگر فرانسوی شعبه جدید هندسه به نام نوموگرافی را که ابتدا بوسیله ریاضیدان ایتالیائی لوئیجی کره‌مونا ایجاد شده بود فوق‌العاده بسط داد.
این حکمت جدید که برای دانشمندان و مهندسین فواید بیشمار دارد نمودارهای ساده‌ای را که برای نمایش قوانین عادی بکار می‌رود تعمیم می‌دهد و استعمال آباک‌ها را جانشین محاسبات عددی طویل و پیچیده می‌نماید و امروزه در علم مساحی و فنون مهندسی و نقشه‌برداری و هواپیمایی و توپخانه مورد استعمال یافته است.
انتشار و ترویج تحصیلات جدید در نیمه اول قرن بیستم سبب آن شد که اتازونی از لحاظ پیشرفتهای علمی در رأس همه کشورها قرار گیرد و ترقیات شگرفی در زمینه علوم تجربی نصیب کشورهائی نظیر هند و ژاپن گردد.
با وجود این تمام تئوریهای بزرگ از قبیل کوانتا، نسبیت و مکانیکموجی از اروپای کهن یعنی کشورهای ایتالیا، انگلستان، فرانسه و آلمان سرچشمه می‌گیرد و در نتیجه رهبری ایشان بود که تجسسات علمی از حدود این کشورها تجاوز کرد و بین‌المللی گردید. لیکن بعد از جنگ جهانی دوم نهضت بزرگ برای پیشرفت مسائل نظری در ممالک متحده آمریکای شمالی بوجود آمد و بخصوص در دانش ریاضی که مبنا و اساس تمام علوم نظری و عملی است فعالیت خارق‌العاده‌ای می‌شود، بطوری که این فعالیت در هیچیک از ممالک دیگر وجود ندارد و تنها کشوری که از این لحاظ با ممالک آمریکای شمالی رقابت فشرده‌ای داشت اتحاد جماهیر شوروی (سابق) بود که آن نیز کشوری جدید و غیر از اروپای کهن بود.
امروزه ریاضیات بیش از پیش و به نحو شگرفی در حریم سایر علوم نفوذ کرده است و نه فقط علوم نجوم و فیزیک و شیمی تحت انضباط آن درآمده‌اند بلکه اصولاً ریاضیات دانش مطلق و روح علم شده است.

گردآورنده : دنیاها،دانشنامهٔ فارسی | www.donyaha.ir

تصویر تصادفی